Discrete weighted least-squares method for the Poisson and biharmonic problems on domains with smooth boundary
نویسنده
چکیده
In this article a discrete weighted least-squares method for the numerical solution of elliptic partial differential equations exhibiting smooth solution is presented. It is shown how to create well-conditioned matrices of the resulting system of linear equations using algebraic polynomials, carefully selected matching points and weight factors. Two simple algorithms generating suitable matching points, the Chebyshev matching points for standard two-dimensional domains and the approximate Fekete points of Sommariva and Vianello for general domains, are described. The efficiency of the presented method is demonstrated by solving the Poisson and biharmonic problems with the homogeneous Dirichlet boundary conditions defined on circular and annular domains using basis functions satisfying and not satisfying the prescribed boundary conditions.
منابع مشابه
Least squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملApproximate solution of boundary integral equations for biharmonic problems in non-smooth domains
This paper deals with approximate solutions to integral equations arising in boundary value problems for the biharmonic equation in simply connected piecewise smooth domains. The approximation method considered demonstrates excellent convergence even in the case of boundary conditions discontinuous at corner points. In an application we obtain very accurate approximations for some characteristi...
متن کاملInvalidity of Decoupling a Biharmonic Equation to Two Poisson Equations on Non-convex Polygons
We clarify the validity of a method that decouples a boundary value problem of biharmonic equation to two Poisson equations on polygonal domains. The method provides a way of computing deflections of simply supported polygonal plates by using Poisson solvers. We show that such decoupling is not valid if the polygonal domain is not convex. It may fail even when the right hand side function is in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 217 شماره
صفحات -
تاریخ انتشار 2011